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In this paper we discuss thermodynamics parameters of black hole horizon and cos-
mological horizon in general high-dimensional space-time. We obtain that the entropy
of a cosmological horizon can be described by the Cardy-Verlinde formula. However,
the entropy of black hole horizon will be expressed in a form of the Cardy-Verlinde
formula, if one adopts the methods given by Abbott and Deser to compute the mass of a
black hole in general high-dimensional space-time. Through discussion, relation among
various thermodynamics parameters of the black hole in general high-dimensional
space-time is given. That is, differential formula of the first law of thermodynamics is
obtained. Because we discuss the general high-dimensional space-time, our result has
universality.
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1. INTRODUCTION

Entropy of the black hole is one of the important subjects in theoretical
physics. Since entropy has statistical meaning, the understanding of entropy in-
volves the sense of the microscopic essence of the black hole. Fully understanding
of it needs a good quantum gravitation theory. It is thought that an efficient theory
of quantum gravitation should contain the definition of Bekenstein-Hawking en-
tropy in its frame. However, at present the work of it is not satisfying. The statistical
origin of the black hole is not solved yet (Liberati, 1997). dS/CFT seize on key in
the microcosmic interpretation of the black hole entropy. Cardy-Verlinde formula
given by Verlinde is the relation among entropy, total energy of some conformal
field in arbitrary dimension space-time and Casimir energy. This formula is valid
for different black holes.
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Recently much attention has been focused on studying de Sitter (dS) space and
asymptotically dS space. This is motivated at least by the following aspect. Recent
analysis of astronomical data for supernova indicates that there is a positive cos-
mological constant in our universe (Perlmutter et al., 1997; Caldwell et al., 1998;
Carnavich et al., 1998). Thus our universe might approach to a dS phase in the far
future. One of the important subjects in theory physics is studying thermodynam-
ics properties of dS space-time. Li and Shen (2004), Li and Zhao (2001), Gao and
Shen (2003) and Zhang and Zhao (2004) computed the entropy of dS space-time
in terms of brick-wall method. Zhao et al. (2002, 2003, 2004) investigated the sta-
tistical entropy of dS space-time via the membrane model. They all derived more
significant results. Recently, Cai (2002a,b), Myung (2002), and Setare and Altaie
(2003) discussed thermodynamics parameters of dS space-time and calculated
Casimir energy. The entropy of black hole horizon and the entropy of cosmolog-
ical horizons can also be expressed in terms of the Cardy-Verlinde formula.

In this paper, we will generalize the discussion in Cai (2002a) to the
case of general high-dimensional space-time. For general high-dimensional
space-time, except for the cosmological horizon, there is a black hole hori-
zon, which has also associated Hawking radiation and entropy with differ-
ent temperature, if we adopt the definition of mass due to Balasubranma-
nian, de Boer and Minic (BBM), (Balasubranmanian et al., 2002), we ob-
tain that the entropy of black hole horizon can not be expressed in a form
of the Cardy-Verlinde formula. But if we use the method of Abbott and
Deser (1982) in general high-dimensional space-time, we can derive that the
entropy of black hole horizon can be expressed in a form of the Cardy-
Verlinde formula. Therefore, we obtain the thermodynamics first law expres-
sion of general high-dimensional black hole. In Section 4 we will give its
application.

2. ENTROPY OF THE COSMOLOGICAL HORIZON
CARDY-VERLINDE FORMULA

The linear element of high-dimensional space-time is given by Gallo (2004)

dS2 = −N2(r)dt2 + A2(r)dr2 + r2d�2
d−2, (1)

here

N (r) = A−1(r) =
{

1 − 2m(r)

rd−3

}1/2

, (2)

where

m(r) = M + �rd−1

(d − 2)(d − 1)
− 8πCr [(d−2)λ+1]

(d − 2)[(d − 2)λ + 1]

if λ �= − 1

d − 2
; C �= 0
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� is cosmological constant. Space-time (1) has two horizons. There are
cosmological horizon location rc and black hole horizon location r+. And it
satisfies equation N (r) = 0.

The cosmological horizon has associated thermodynamic quantities

T = 1

4πrc

{
−(d − 3)− 2

8πC

d − 2
r [(d−2)λ−d+4]

c + 2�r2
c

(d − 2)

}
,

S = rd−2
c Vol (Sd−2)

4G
,

φm = ∂Etot

∂C
= − 8πr [(d−2)λ+1]

c

(d − 2)[(d − 2)λ + 1]
, (3)

where G is d-dimensional gravitation constant, Vol(Sd−2) denotes the volume of
unit (d − 2) sphere d�2

d−2, φm is potential conjugate to C. Following Youm (2001),
Cai (2001) and Klemm et al. (2002), we define the zero temperature contribution,
called the proper internal energy, as

Eq = 8πCr [d−2)λ+1]
c

1 + λ

(d − 2)λ + 1
. (4)

So, the thermal excitation energy is

E = Etot − Eq, (5)

where, Etot is Balasubranmanian, de Beerand and Minic (BBM),
(Balasubranmanian et al., 2002) mass of black hole

Etot = −M = �rd−1
c

(d − 2)(d − 1)
− 8πCr [(d−2λ+1]

c

(d − 2)[(d − 2)λ + 1]
− rd−3

c

2
. (6)

If we assume that the holographic dual theory is conformal, then the pressure
p = −( ∂E

∂V
)S,C is given by

p = E

(d − 2)V
, (7)

where V is the volume of the system. So, the Casimir energy of the holographic
dual theory is given by

Ec = (d − 2)(Etot + pV − T S − 2φmC) = −Vol(Sd−2)

8πG
(d − 2)rd−3

c . (8)

So the entropy corresponding cosmological horizons (3) can be written as

S = 2πl

d − 2

√
|Ec| (2(Etot − Em) − Ec), (9)
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where

Em = φmC = − 8Cπr [(d−2)λ+1]
c

(d − 2)[(d − 2)λ + 1]
(10)

l2 = (d − 1)(d − 2)

2�
,

V ol(Sd−2)

G
= 8π

d − 2
. (11)

This result shows that the thermodynamics parameters of the cosmological
horizon in static higher dimensional space-times can be described by conformal
field, which is supposed to be an entropy formula of CFT in any dimension. Thus
our result provides support of the dS/CFT correspondence. One can read Hull
(2000), Balasubramanian et al. (2001), Witten (1998), and Mazur and Mottola
(2001) for literature review.

From (3), we derive that thermodynamics functions corresponding the cos-
mological horizon satisfy the first law of thermodynamics

dEtot = T dS + φmdC, (12)

and

T =
(

∂Etot

∂S

)
C

, φm =
(

∂Etot

∂C

)
S

. (13)

3. ENTROPY OF THE BLACK HOLE HORIZON
AND CARDY-VERLINDE FORMULA

Thermodynamics parameters corresponding the black hole horizon are

T̃ = 1

4πr+

{
(d − 3) + 2

8πC

d − 2
r

[(d−2)λ−d+4]
+ − 2�r2

+
(d − 2)

}
,

S̃ = rd−2
+ V ol(Sd−2)

4G
,

φ̃m = ∂Ẽtot

∂C
= 8πr [(d−2)λ+1]

c

(d − 2)[(d − 2)λ + 1]
, (14)

Abbott and Deser (1982) mass

Ẽtot = M = − �rd−1
+

(d − 2)(d − 1)
+ 8πCr

[(d−2λ+1]
+

(d − 2)[(d − 2)λ + 1]
− rd−3

+
2

. (15)

We define the zero temperature contribution, called the proper internal energy,
as

Ẽq = −8πCr
[2−2)λ+1]
+

1 + λ

(d − 2)λ + 1
. (16)
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Ẽ = Ẽtot − Ẽq, p = Ẽ

(d − 2)V
, (17)

Casimir energy is defined as

Ẽc = (d − 2)(Ẽtot + pV − T̃ S̃ − 2φmC) = Vol(Sd−2)

8πG
(d − 2)rd−3

+ .

So the entropy of the black hole horizon (14) can be written as

S̃ = 2πl

d − 2

√
Ẽc(2(Ẽtot − Ẽm) − Ẽc) (18)

where

Ẽm = φ̃mC = 8Cπr [(d−2)λ+1]
c

(d − 2)[(d − 2)λ + 1]
. (19)

From (14), we derive that thermodynamics functions corresponding the black
hole horizon satisfy the first law of thermodynamics

dẼtot = T̃ dS̃ + φ̃mdC, (20)

and

T̃ =
(

∂Ẽ

∂S̃

)
C

, φ̃m =
(

∂Ẽ

∂C

)
S̃

. (21)

According to Ẽtot = −Etot = M , from (12) and (20), we have

T̃ dS̃ + T dS + φ̃mdC + φmdC = 0. (22)

4. GIVE AN EXAMPLE

For Reissner-Nordstrom(dS/AdS) black holes.

λ = −1, C = −Q2

8π
. (23)

Thus

m(r) = M + �rd−1

(d − 2)(d − 1)
+ Q2

(d − 2)(d − 3)rd−3
. (24)

And that

Eq = 0 · Em = − Q2

(d − 2)(d − 3)rd−3
c

, Ec = −Vol(Sd−2)

8πG
(d − 2)rd−3

c ,

Etot = −M = �rd−1
c

(d − 2)(d − 1)
− Q2

(d − 2)(d − 3)rd−3
c

− rd−3
c

2
. (25)
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Substituting (25) into (9), we derive for Reissner-Nordstrom(dS/AdS) black
holes the entropy of the cosmological horizon can be expressed as

S = 2πl

d − 2

√
|Ec| (2(Etot − Em) − Ec). (26)

In similar way, the entropy of the black hole horizon can be expressed as

S̃ = 2πl

d − 2

√
Ẽc(2(Ẽtot − Ẽm) − Ẽc). (27)

For d-dimensional monopole black hole

λ = d − 4

d − 2
, C = − (d − 2)η2

2
, (28)

thus

m(r) = M + �rd−1

(d − 2)(d − 1)
+ 4πη2

(d − 3)rd−3
. (29)

Eq = −8πη2rd−3
c , Ec = −Vol(Sd−2)

8πG
(d − 2)rd−3

c ,

Em = 1

2
φmη = −4πη2rd−3

c

d − 3
,

Etot = −M = �rd−1
c

(d − 2)(d − 1)
+ 4πη2rd−3

c

(d − 3)
− rd−3

c

2
. (30)

So the entropy of the cosmological horizon can be written as

S = 2πl

d − 2

√
|Ec| (2(Etot − Em) − Ec), (31)

where

Em = 1

2
φmη = −4πη2rd−3

c

d − 3
, (32)

In similar way, the entropy of the black hole horizon can be expressed as

S̃ = 2πl

d − 2

√
Ẽc(2(Ẽtot − Ẽm) − Ẽc), (33)

where

Ẽm = 1

2
φ̃mη = 4πη2rd−3

+
d − 3

, Ẽc = Vol(Sd−2)

8πG
(d − 2)rd−3

+ , Ẽq = 8πη2rd−3
+ .

(34)
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5. CONCLUSION

Based on the above discussion, for general high-dimensional space-times,
we obtain that total entropy is the sum of the entropy corresponding to black hole
horizon and the entropy corresponding to cosmological horizon. The entropy
of a cosmological horizon can be described by the Cardy-Verlinde formula. If
one uses the BBM mass of asymptotically dS space, the black hole horizon
entropy can not be expressed by a form like the Cardy-Verlinde formula. Here
we report that if we adopt the theory given in Abbott and Deser (1982) and
calculate mass of general high-dimensional black holes by AD method , the black
hole entropy can also be rewritten in a Cardy-Verlinde form. It is obtained that
thermodynamics parameter of the black hole horizon can be described by CFT
in general high-dimensional space-time. This result provides support for dS/CFT.
Because we discuss the general high-dimensional space-time, our result has
universality.
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